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Clusters of nosocomial infection often occur undetected, at substantial cost to the medical system and
individual patients. We evaluated binary cumulative sum (CUSUM) and moving average (MA) control
charts for automated detection of nosocomial clusters. We selected two outbreaks with genotyped strains
and used resistance as inputs to the control charts. We identified design parameters for the CUSUM and
MA (window size, k, a, b, p0, p1) that detected both outbreaks, then calculated an associated positive pre-
dictive value (PPV) and time until detection (TUD) for sensitive charts. For CUSUM, optimal performance
(high PPV, low TUD, fully sensitive) was for 0.1 < α <0.25 and 0.2 < β <0.25, with p0 = 0.05, with a mean
TUD of 20 (range 8–43) isolates. Mean PPV was 96.5% (relaxed criteria) to 82.6% (strict criteria). MAs
had a mean PPV of 88.5% (relaxed criteria) to 46.1% (strict criteria). CUSUM and MA may be useful tech-
niques for automated surveillance of resistant infections.

osocomial infections afflict 2 to 5 million patients in the
United States annually and contribute to approximately

88,000 deaths (1,2). These infections are the second most fre-
quent adverse effect of hospitalization (3,4). In most instances
such infections are isolated, though studies have reported that
from 2% (5,6) to 20% (7) to 60% (8) occur in clusters. A min-
imal estimate of the epidemic nosocomial infection burden is
thus 40,000 cases annually (2% of 2,000,000), while a maxi-
mal estimate is conceivably five times that figure or more. 

Most hospitals in the United States will have at least one
outbreak per year, and large referral hospitals may have sev-
eral (9). Nosocomial infection clusters can be difficult to diag-
nose and detect (5), which can have serious ramifications (10).
Although options for computerized surveillance are increasing
(11–15), many current methods for outbreak detection are
effective only when substantial time has elapsed from the
actual events. Techniques are often poorly automated (16–18),
and few sophisticated cluster detection techniques have been
employed in nosocomial infection surveillance (19–21). 

Cumulative sums (CUSUMs) are statistical tools, based on
a type of sequential hypothesis test, that were originally used
in manufacturing processes to monitor production defect rates
(22–24). Increments are added or decrements are subtracted

from a running total over time, according to measurements of
quality of serial items. The behavior of this cumulative sum is
tracked until one of two conditions is met, with CUSUM val-
ues beyond these thresholds signaling either 1) a statistically
significant change in quality to some prespecified level or 2)
acceptance of the hypothesis of no change. CUSUMs have
been used for several decades in health care settings, including
for tracking operator improvements in performing procedure
(25–27), monitoring fever curves in neutropenic patients (28),
and detecting community Salmonella outbreaks (15). Several
forms exist, including a so-called binary or Bernoulli CUSUM
in which failure is rated as 1 and success as 0, a coefficient is
subtracted, and the resulting values are added to the CUSUM.
This binary form has not to our knowledge been applied to
outbreak detection. 

Moving averages (MAs) are in wide use in several fields,
such as economics, where methods sensitive to sudden
changes and filtering out background noise are required. Thus,
for instance, economic indicators may be analyzed, with a MA
calculated for the most recent values and compared with the
historical mean for that indicator. An MA much higher than
the historical mean indicates a statistical increase. MAs also
are used in manufacturing quality control for the same reason
(28). Although various MA techniques have been applied to
disease rates in public health surveillance (29), they have not
previously been applied to monitor changes in strain character-
istics, such as antimicrobial resistance. 
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We hypothesized that by treating antimicrobial resistance
as the quality indicator of individual isolates, these techniques
could be used to detect nosocomial clusters. Both techniques
have been demonstrated in the quality control literature to be
more sensitive to small rate changes than conventional p-type
charts (22–24,30). We evaluated the performance of these
techniques in simulated real-time detection of two genotypi-
cally characterized outbreaks of nosocomial infection caused
by antimicrobial-resistant bacteria.

Methods

Outbreaks Investigated
The study hospital is a 330-bed tertiary-care pediatric

facility in the northeastern United States. We selected all
investigated nosocomial outbreaks of antibiotic-resistant bac-
teria in the study hospital for which genotyping data were
available for the period 1995–2000, inclusive. An outbreak
with genotyped organisms from 1997 was excluded because
the causative agent, Pseudomonas aeruginosa, was sensitive
to all standard therapeutic agents. This cluster was thus not a
candidate for detection with our techniques. A line listing of
all patients, with isolates, from both outbreaks is presented in
the Table. 

The Institutional Review Board of the study hospital
authorized us to perform this study without obtaining informed
consent. All patient identifiers were either deleted or irrevers-
ibly encrypted to ensure confidentiality.

Outbreak 1
An outbreak of surgical site infections caused by methicil-

lin-resistant Staphylococcus aureus (MRSA) occurred in
August through September 1999 in patients after cardiac sur-
gery. Approximately 800 such surgeries are performed annu-
ally in the study hospital. Immediately after surgery, patients
are cared for in the cardiovascular intensive care unit (CICU),
which has 23 beds, 1,550 admissions per year, and an average
length of stay of 4.4 days. After they are stabilized, the
patients are transferred to the cardiac surgery ward (28 beds,
>2,300 admissions per year; and average length of stay, 3
days). A single genotype of MRSA was isolated from four
patients with evidence of deep/organ-space surgical infection
after cardiac surgery. One of the genotypically identical iso-
lates (O3-2) was detected by admission screening culture at
another hospital to which the patient had been transferred.
Another isolate (O3-7) was detected in a blood culture
obtained at the hospital to which the patient had been trans-
ferred. Two surgical patients without clinical infection were
colonized with isolates of a second genotype. Methicillin
resistance was defined as a MIC of oxacillin of >0.5 mg/ml.
All isolates of Staphylococcus aureus from any body site from
the CICU and cardiac surgical ward were included in the anal-
yses.

Outbreak 2
An outbreak of vancomycin-resistant enterococcus (VRE)

occurred in May through June 2000 involving two units: the

Table. Cluster patients with isolates, dates, and sensitivitiesa

Patient Culture date Body site PFGE type Resistance phenotypeb

MRSA

O1-1 1/22/99 wd,bl E cli ERY tcy van SAM FEP OXA sxt CZO AMC amk 

O1-2 7/10/99 no,ax D CLI ERY TCY van OXA sxt AMK 

O1-3 7/10/99 sp D CLI ERY TCY van SAM FEP OXA sxt CZO AMC AMK 

O1-4 8/23/99 wd C CLI ERY TCY van SAM FEP OXA sxt CZO AMC AMK 

O1-5 9/3/99 wd C CLI ERY TCY van SAM FEP OXA sxt CZO AMC AMK 

O1-6 9/6/99 wd C CLI ERY TCY van SAM FEP OXA sxt CZO AMC AMK 

O1-7 9/13/99 bl C CLI ERY TCY van OXA sxt AMK 

VRE

O2-1 1/20/00 bl non-B VAN amc AMP

O2-2 5/12/00 st B VAN amc AMP

O2-3 5/14/00 fl B VAN amc AMP

O2-4 5/18/00 st B VAN amc AMP

O2-5 5/19/00 ti,st B VAN amc AMP TCY chl IPM nit

O2-6 5/24/00 st B VAN amc AMP

O2-7 6/23/00 fl non-B VAN AMC AMP

aMRSA, methicillin-resistant Staphylococcus aureus; PFGE, pulsed-field gel electrophoresis; O1, outbreak 1; O2, outbreak 2; VRE, vancomycin-resistant enteroccocus; bl, blood; sp, 
sputum; st, stool; wd, wound; ti, tissue; ax, axilla; no, nose; fl, fluid.
bAntibiotic codes in capital letters are resistant results; those in lowercase letters are susceptible: AMC, amoxicillin/clavulanate; AMP, ampicillin; AMK, amikacin; CLI, clindamycin; 
CZO, cefazolin; ERY, erythromycin; FEP, cefepime; OXA, oxacillin; SAM, ampicillin/sulbactam; SXT, trimethoprim/sulfamethoxazole; TCY, tetracycline; VAN, vancomycin.
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bone marrow transplant unit and the general pediatric inten-
sive care unit PICU. The bone marrow transplant unit is a 13-
bed unit providing hematopoietic stem-cell transplantation. It
has approximately 260 admissions per year, with an average
length of stay of 12.9 days. When patients require ICU care,
they are transferred to specially ventilated rooms in the PICU.
The PICU is an 18-bed multidisciplinary unit, with approxi-
mately 1,650 admissions per year, and an average length of
stay of 3.2 days. In May 2000, a patient colonized with VRE in
the bone marrow transplant unit was transferred to the PICU.
Other cases of VRE colonization or infection were detected in
both the bone marrow transplant unit (4 cases) and the PICU
(3 cases). Isolates of Enteroccocus faecium  from five patients
were demonstrated to be genotypically identical. Vancomycin
resistance was defined as a MIC of vancomycin of >16 µg/mL.
All isolates of E.faecium or unspeciated Enterococcus from
any body site on the affected units were included in the analy-
ses. Genotyping was performed by ARUP Laboratories (Salt
Lake City, UT). Genotypic identity was defined according to a
published procedure (31).

Data Acquisition:
Records for all inpatient cultures were downloaded from

the study hospital’s information system for January 1995–Sep-
tember 2000 into WHONET 5.0 (WHO Collaborating Center,
Boston, MA). Species identification had been performed per
standard laboratory procedures. Antibiotic sensitivities had
been performed by measurement MIC with a MicroScan
Walkaway-96 (Dade Behring, Inc., Deerfield, IL). Standard
Kirby-Bauer technique was used when an organism failed to
grow sufficiently to perform MIC analysis. Only final suscep-
tibility readings were included. Susceptibility cutoffs were
defined according to National Committee for Clinical Labora-
tory Standards (32). Indication for culture was specified as
either clinical (C), routine surveillance (R), or outbreak inves-
tigation (O). Clinical cultures were ordered by treating physi-
cians for care of the individual patient. Routine surveillance
cultures included weekly stool screens for VRE and sentinel
event screens. Infection control policy at the study hospital
was to screen a high-risk unit (ICU or bone marrow transplant
unit) if a patient was found to have new MRSA or VRE colo-
nization or infection. Outbreak investigation cultures were
those taken as part of a formal or informal outbreak investiga-
tion. Culture indications were determined from infection con-
trol records.

Data Analysis
Isolates of the same species from a given patient within 60

days of the previous isolate were excluded as duplicate isolates.
All isolates of E. faecium, enterococcus, and S. aureus from the
affected units were parsed by the BugCruncher program (Vecna
Technologies, Hyattsville, MD) in the manner depicted in Fig-
ures 1 and 2. The resistance value (for binary tests 0 = suscepti-
ble or 1 = nonsusceptible; for quantitative tests, the actual MIC)
for each isolate was then passed to CUSUM (binary only) or

MA (binary and quantitative) modules, where alerts were gen-
erated on the basis of control limits. Test statistics and control
limits were recalculated with the addition of each new isolate
and processed in chronological order. 

Each type of chart is calculated based on several design
parameters (w and k for MA; a, b, p0, p1 for CUSUM). To
explore performance robustness under various conditions, we
selected a reasonable range of values for the control parame-
ters for CUSUM (0.01 < α < 0.25; 0.01 < β < 0.25; 0.01 <p0

Figure 1. Data processing methodology for cumulative sums. BMT, bone
marrow transplant unit; ICU, intensive care unit; ENT, enterococcus; VAN
MIC, vancomycin minimum inhibitory concentration; NCCLS, National
Committee for Clinical Laboratory Standards antibiotic susceptibility
breakpoint; CUSUM, cumulative sum; UCL, upper confidence limit.

Figure 2. Data-processing methodology for moving averages. CICU,
cardiac intensive care unit; SAU, S. aureus; SW, surgical wound; OXA
MIC, oxacillin minimum inhibitory concentration; MA, moving average
chart; NCCLS, National Committee for Clinical Laboratory Standards,
antibiotic susceptibility breakpoint; UCL, upper control limit.



Emerging Infectious Diseases  •  Vol. 8, No. 12, December 2002 1429

RESEARCH

<0.25; 0.01 < p1 <0.25) and MA (5 < w <90 and 1 < k <4)
charts. Positive predictive value (PPV) was calculated for
those design parameter values that detected both outbreaks.
Further detail on these statistical methods and the formulae
used for calculating their test statistics and detection thresholds
are presented in the Appendix. 

To validate the empirically derived design parameters in
terms of theoretic performance, we then calculated the out-of-
control (an actual change in incidence) and in-control (no
change in incidence) time until detection (TUD) for the sets of
design parameters that detected both outbreaks. We used stan-
dard methods for calculating TUDs, employing a Monte Carlo
simulation program we wrote for that purpose. Simulations
were run over 10,000 iterations.

Two definitions of cluster detection were used: generation
of an alert at the second outbreak isolate (isolate-level detec-
tion) or during the first month of the outbreak (month-level
detection). Positive predictive value (percent of detected
events considered relevant) was calculated in the following
manner (33) all detected events previously unnoted by infec-
tion control personnel were evaluated independently by two
hospital epidemiologists (KS, DG). The epidemiologists clas-
sified each event as A) initiate investigation, B) monitor situa-
tion, or C) ignore. A “C” rating from both epidemiologists or a
“B” from one and a “C” from the other was considered a false-
positive result. True positives were divided into positives by
strict criteria (receiving an “A” rating) and by relaxed criteria
(receiving at least “B” ratings from both epidemiologists).
PPVs were calculated by strict and relaxed criteria separately.

Results

Cluster Descriptions
The dataset contained a total of 6,382 positive cultures of

any organism (from 3,346 different patients) from the units
affected by the outbreak of oxacillin-resistant S. aureus. Of
those, 728 (from 323 patients) were S. aureus. Of the 323
unique isolates of S. aureus in the affected units, 14 (4.3%)
were oxacillin resistant, whereas for the hospital as a whole 84
(4.2%) of 1,983 S. aureus isolates were oxacillin resistant. 

The dataset contained a total of 9,012 positive cultures of
any organism (from 4,315 patients) from the units affected by
the outbreak of vancomycin-resistant enterococcus. In the
affected units, 21 (14.1%) of 149 enterococcal isolates were
vancomycin resistant, whereas for the entire hospital 41 (5.3%)
of 768 enterococcal isolates were vancomycin resistant.

For all implicated units, the 15 most common bacterial
species represented 4,948 unique isolates, an average of 18 per
unit per month. Overall 165 different organisms were isolated,
74 of them representing only three or fewer isolates over the
69 months included in the dataset.

CUSUMs
Several CUSUM charts proved capable of detecting both

outbreaks by the second isolate. Figure 3 displays a represen-

tative CUSUM chart, which detected the VRE outbreak early
in its course. Maximal performance robustness was obtained
when 0.1 < α <2 and 0.2 < β <0.25, with p0 = 0.05. Values of
β <0.2 were associated with poor performance. 

Monte Carlo simulations, run with p1 = 0.2 over the sets of
design parameters that performed most robustly, yielded an
out-of-control TUD ranging from 8 to 45 isolates (average
20.4), and an in-control TUD, ranging from 55 to 2,390 iso-
lates (average 427). Both the out-of-control TUD and in-con-
trol TUD decreased with higher values of α; for α = 0.2 or
0.25, the in-control TUD ranged from 55 to 88; whereas at α =
0.1, it ranged from 184 to 306 isolates. 

The mean PPV of CUSUM techniques ranged from 96.5%
(relaxed criteria) to 82.6% (strict criteria). Lower values for α
were associated with higher PPV. On average, the sensitive
control charts generated 9.5 novel alerts over the 69 months of
the study period, or 1.6 events per year for all involved units
and organisms (enterococcus, S. aureus).  

Moving Averages
For MA control charts, only those which used quantitative

MICs (vancomycin: 2–16 mg/mL; oxacillin: 0.25–4 mg/mL)
were capable of detecting both outbreaks; no binary (suscepti-
ble = 0; nonsusceptible = 1) MA charts detected both out-
breaks. Sensitive window sizes (w, the number of isolates
considered in calculating the MA) varied from 5 to 30 isolates.
Parameter sets with larger window sizes failed to detect both
outbreaks. 

Monte Carlo simulations for the design parameters that
detected both outbreaks, assuming a change in MICs of one
standard deviation, yielded an out-of-control TUD ranging from
4 to 10,796 isolates (mean 1,568; median 14), and an in-control

Figure 3. Moving average test iteration detecting an outbreak of methi-
cillin-resistant Staphylococcus aureus. Test parameters were w = 10, k
= 4, and included all S. aureus from all body sites from the affected
wards, excluding strains found during outbreak investigations. MIC,
minimum inhibitory concentration
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TUD ranging from 11 to 25,488 (mean 4,006; median 180). For
k < 4, the mean out-of-control TUD was 14, while the mean in-
control TUD was 350 isolates.

Figure 4 displays a representative MA test combination
that detected the MRSA outbreak by the second isolate. The
mean PPV ranged from 88.5% (relaxed criteria) to 46.1%
(strict criteria). On average, sensitive MA charts generated
10.9 novel alerts over the entire study period, or 1.9 per year
for all units and organisms studied. 

Discussion
We illustrated the performance of a system designed for

real-time monitoring of clinical microbiology data from the
hospital laboratory information system. Two techniques bor-
rowed from other domains were capable of detecting two care-
fully characterized outbreaks in simulated real time. The
binary CUSUM proved more robust than MAs.

Many metrics for outbreak detection are based on month of
outbreak (11,14,15,17,18,34), whereas in nosocomial out-
breaks greater attention to individual cases is probably war-
ranted given the smaller numbers of patients involved, the
possibility of early definitive intervention, and the comorbidi-
ties of infected patients. The techniques used in this study
proved capable of detecting an outbreak before the end of a
monthly surveillance period. 

The reproducibility of these findings is of key importance.
We used an a priori reasonable set of possible design parame-
ter values, then combined empirical evaluation of their perfor-
mance with theoretical evaluation via Monte Carlo
simulations.

We used only two outbreaks for evaluation, given the diffi-
culty of generating and validating such datasets. A study that
investigates larger numbers of similar outbreaks would
improve generalizability. The theoretical simulations tend to
support the generalizability of the test statistics used, as the
empirically robust design parameters were associated with low
out-of-control and high in-control TUD values. 

The techniques appear most useful when the baseline inci-
dence is relatively low, and it is unclear whether these methods
would be applicable in settings where antibiotic-resistant bac-
teria are more common, as the study hospital had relatively
low rates of MRSA and VRE. 

The surveillance methods evaluated here are primarily use-
ful for detecting outbreaks caused by resistant organisms. In
their current implementation, they would not be useful for set-
tings where outbreaks are caused by organisms whose antibi-
otic susceptibilities are indistinguishable from those of
endemic flora, as in the cluster of Pseudomonas excluded from
the present study. Additional research would be required to
make these methods applicable in those settings.

From a practical perspective, the CUSUM charts detected
the outbreaks by the second isolate, a finding corroborated by
results of the Monte Carlo simulations. An increased incidence
from .05 to .20 would be detected on average within 1.5 actual
outbreak isolates for an out-of-control TUD of 10 (best-per-

forming CUSUM), or at the third outbreak isolate for an out-
of-control TUD of 20 (mean CUSUM performance). These
results, supported empirically and theoretically, are consistent
with the goals of nosocomial outbreak detection. 

In terms of resources potentially wasted on false-positive
results, the CUSUM charts that detected both outbreaks were
remarkably accurate, with an average PPV of >80%, even by
strict criteria, whereas the MIC MA parameter sets had lower
PPVs. According to our calculated PPV for CUSUM, only 1 in
20 alerts would be deemed retrospectively as unworthy of any
further evaluation, while 1 in 5 would not be deemed worthy
of actual investigation. Assuming an annual rate of 1 alert per
organism and unit, 4 units under surveillance, and 15 organ-
isms under surveillance, 60 alerts would be generated annu-
ally, of which 12 would not be deemed worthy of attention,
approximately one false alarm per month. Slightly more than
twice as many would be considered spurious in retrospect on
the basis of the MA results. 

Using the in-control TUD values to estimate the frequency
of spurious results yields a better estimate. With 18 isolates of
the 15 most commonly isolated bacteria per unit per month, 4
units under surveillance, we would anticipate 72 isolates per
month. The mean in-control TUD value for CUSUM charts is
427, suggesting a false-positive alert once every 5 months,
though false-positive alerts are associated with a higher out-of-
control TUD. Taking the chart with the lowest out-of-control
TUD, the in-control TUD is 55, suggesting a false-positive
result slightly more than once per month, similar to our
observed rate. 

Strengths of this study include the availability of genotyp-
ing data for outbreak characterization and the availability of
quantitative MICs, the use of practical outcome measures, and

Figure 4. Cumulative sum test iteration detecting an outbreak of vanco-
mycin-resistant enterococcus. Test parameters were p0 = 0.05, p1 =
0.15, a = 0.15, b = 0.2, and included enterococcal isolates from all body
sites from the affected wards, excluding strains found during outbreak
investigation.
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combination of empirical and theoretical methods for evaluat-
ing test statistics.

An additional problem in validating detection techniques is
the lack of a gold standard for determining the relevance of a
computer-detected cluster. We chose a practical approach,
given the ultimate clinical application of such a system. We
may have overestimated the positive predictive value,
although we evaluated by both strict and relaxed criteria. At
the time of evaluation, reviewers were unaware of events that
followed, decreasing the probability of outcome-based bias. A
prospective trial of these techniques, with collection of geno-
typing information, should help to resolve this problem.

Areas for additional research include methods for analyz-
ing duplicate isolates from a single patient, more sophisticated
techniques for modeling patient location, accounting robustly
for changes in sampling intensity, methods for using quantita-
tive CUSUMs, and the potential need for corrections for inter-
dependence. 

CUSUM and MA analyses of antimicrobial resistance
proved capable of detecting two important nosocomial out-
breaks early in their course in simulated real time. Both meth-
ods had relatively high positive predictive values; CUSUM
performed better than MA. These analytical techniques may be
of value in automated detection of nosocomial outbreaks and
should be evaluated in real-time clinical practice.
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Appendix: Calculating Test Statistics 
Binary cumulative sum charts, based on the theory of sequential

probability ratio tests, monitor a cumulative term that is incremented
or decremented by certain amounts for each positive or negative
result, respectively, in order to sequentially test between user-speci-
fied acceptable and unacceptable rates (35,36) (Equation 1). In our
application, the CUSUM statistic Si is reduced at the time of each iso-
late by an amount D, a calculated value that depends on the shift we

wish to detect, and then increased by 1 for those isolates that are anti-
biotic resistant. The plotted statistic for the ith isolate, Si, and the con-
trol limit factors h0 and h1 are calculated as

Si =  = Si-1 + Xi - D , (1)

h0 =            , and (2)

h1 =              , (3)

where Xi = 1 if the ith isolate is resistant and 0 if it is not, the decre-
ment D is computed as

D =               ,4

α is the desired type I error rate, β is the desired type II error rate, p0
is the acceptable occurrence rate, p1 is the unacceptable occurrence
rate that is desired to be detected, and S0 = 0 as a starting value.

The cumulative sum then is compared to nonconstant control lim-
its that periodically are recalculated by subtracting h0 from and add-
ing h1 to any Si value that falls outside either limit, resulting in new
limits until the next such violation and starting with lower control
limit (LCL) = S0 - h0 = h0 and upper control limit (UCL) = S0 + h1 =
h1 . Values above the UCL indicate an outbreak, i.e., rejection of the
hypothesis of p0 in favor of the hypothesis of p1, although contrary to
traditional control charts values beneath the LCL here do not indicate
a rate decrease but rather acceptance of p0 over p1. 

For the moving average (MA) charts, the moving average for the
ith isolate with a “window” of size w (varied in different test condi-
tions), Yw,i, is calculated as

Yw,i = (4)

This result then is compared to estimated upper (UCL) and lower k-
sigma control limits for the ith isolate, LCLi and UCLi, with the stan-
dard deviation of the ith moving average, Yw,i, estimated by using the
conventional moving range (MR) control chart method for individual
data that occur over time,

             , (5)
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     , (8) 

all for i >2, where i is the current total number of data points, Xi is the
ith data value, w is the size of the moving average, and Xi is the aver-
age of all data up to and including the ith data value. An MA value
that exceeds its corresponding UCL will trigger an outbreak alert.
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Appendix: Calculating Test Statistics  
 

Binary cumulative sum charts, based on the theory of sequential probability ratio 
tests, monitor a cumulative term that is incremented or decremented by certain amounts 
for each positive or negative result, respectively, in order to sequentially test between 
user-specified acceptable and unacceptable rates (35,36) (Equation 1). In our application, 
the CUSUM statistic Si is reduced at the time of each isolate by an amount D, a 
calculated value that depends on the shift we wish to detect, and then increased by 1 for 
those isolates that are antibiotic resistant. The plotted statistic for the ith isolate, Si, and 
the control limit factors h0 and h1 are calculated as 
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where Xi = 1 if the ith isolate is resistant and 0 if it is not, the decrement D is computed as 
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, 

 is the desired type I error rate, β is the desired type II error rate, p0 is the acceptable 
occurrence rate, p1 is the unacceptable occurrence rate that is desired to be detected, and 
S0 = 0 as a starting value. 
 The cumulative sum then is compared to nonconstant control limits that 
periodically are recalculated by subtracting h0 from and adding h1 to any Si value that 
falls outside either limit, resulting in new limits until the next such violation and starting 
with lower control limit (LCL) = S0 - h0 = h0 and upper control limit (UCL) = S0 + h1 = h1 

. Values above the UCL indicate an outbreak, i.e., rejection of the hypothesis of p0 in 
favor of the hypothesis of p1, although contrary to traditional control charts values 
beneath the LCL here do not indicate a rate decrease but rather acceptance of p0 over p1.  

For the moving average (MA) charts, the moving average for the ith isolate with a 
“window” of size w (varied in different test conditions), Yw,i, is calculated as 
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This result then is compared to estimated upper (UCL) and lower k-sigma control limits 
for the ith isolate, LCLi and UCLi, with the standard deviation of the ith moving average, 
σY,w,i, estimated by using the conventional moving range (MR) control chart method for 
individual data that occur over time, 
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all for i 2, where i is the current total number of data points, Xi is the ith data value, w is 
the size of the moving average, and iX  is the average of all data up to and including the 

ith data value. An MA value that exceeds its corresponding UCL will trigger an outbreak 
alert. 
 


